
Rust references considered
harmful…?

(at least, if they’re pointing to C/C++ things)

Adrian Taylor, Chromium, Google
ade@hohum.me.uk

This talk…

(a little bit about)
Why Chromium
wants to use Rust

How C++ and Rust
developers might

interact
Arbitrary Self Types

Bits that are hopefully interesting for RfL!

Hurdles to Rust
deployment in

Chromium (technical
& social) Not going to talk about -

but ask me after if you like!

Rust references must never refer to C data

At least, that’s Chromium’s current belief
Does it apply to the Linux kernel?

++
^

Background: Chromium

C++ has errors

So, rewrite Chromium in Rust?

Nope.

Write new bits of Chromium in Rust. Interop!

Existing C++ thingy New Rust thingy

Existing C++ thingy New Rust thingy

Chromium C++ developers (lots!) Chromium Rust developers (few, for now)

Existing C++ thingy New Rust thingy

Chromium C++ developers (lots!) Chromium Rust developers (few, for now)

Mistake!

Crash!

Confusion!

Crashes at-a-distance in Rust
Tolerable crashes

● Buffer overflows
● Use-after-free
● Hitting assertions

Intolerable crashes

● UB caused by a reference pointing to
uninitialized data

● UB caused by multiple concurrent mutable
references

● UB caused by mutation of underlying data
while a reference exists

It must not be possible to cause these Rust
crashes by mistakes over in C++

Easy to debug for
C++ developers

Hard to debug for
C++ developers

Rust references must never refer to C++ data

The logical conclusion:

Will C kernel developers get cross if they cause
weird UB crashes-at-a-distance in Rust?

… but maybe we’re wrong…?

The happy place: cxx!
#[cxx::bridge]
mod ffi {
 extern "Rust" {
 type MultiBuf;

 fn next_chunk(buf: &mut MultiBuf) -> &[u8];
 }

 unsafe extern "C++" {
 include!("example/include/blobstore.h");

 type BlobstoreClient;

 fn new_blobstore_client() -> UniquePtr<BlobstoreClient>;
 fn put(self: &BlobstoreClient, buf: &mut MultiBuf) -> Result<u64>;
 }
}

Why cxx is OK
● Used for narrow interfaces
● Forces you to spell out the entire language boundary ⇒

you’ll think through lifetimes
● (plus, for opaque C++ types, references made non-overlapping: no UB)

● Experience shows cxx is safe in practice everywhere it’s
been used, even though references pass across the
language boundary

● But for wider interfaces, automatically generated, we
need something di erent

https://github.com/dtolnay/cxx/blob/master/src/opaque.rs#L18

So for broad-scale, autogenerated interfaces, what
do we do?

Can we use cxx-like opaque types for autogenerated interfaces?
Maybe…?

● With MaybeUninit and UnsafeCell, we can make &T technically
safe to point at C++ data without risk of UB

● But not &mut T - so we’d have to model all of these as &T which
seems to be too coarse
○ const T* (especially the this pointer)
○ T* (also this)
○ const T&
○ T&

● So we still don’t want to use Rust references to point to C++ data

https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html

CppRef<T>

CppRef<T> / CppPtr<T>

CppPin<T> / CppValue<T>

#[repr(transparent)]

pub struct CppRef<'a, T: ?Sized> {

 ptr: *const T,

 phantom: PhantomData<&'a T>,

}

#[repr(transparent)]

pub struct CppPin<T: ?Sized>(T);

Never vends Rust references to its
contents - only CppRef<T>

Like &T, but without any of the
usual Rust rules

Vec<u8>

Baz

&mut Baz

&Vec<u8>

CppPin<Bar>

Bar

std::string

CppRef<std::string>

Foo CppRef<Foo>

CppRef<Bar>

Foo*

Bar&

&Foo

&Bar

Is this ergonomic?

let farm = new_cpp_pin!(cpp::Farm);

let goat: CppRef<cpp::Goat> = farm.as_cpp_ref().get_goat();

goat.bleat();

CppRef<Goat> comes from C++
CppRef<Goat> goes back to C++

● No dereferencing in Rust
● No conversion to a Rust reference
● CppRef<T> is pretty much just an opaque token from Rust’s perspective

// Autogenerated

impl Goat {

 fn bleat(self: CppRef<Self>) {

 _call_cpp_Goat_bleat_via_c_abi(self.ptr)

 }

}

Requires “arbitrary self types”
unstable feature - working towards
stabilizing

RfL needs this too for
your kernel Arc<T>

and similarimpl SomeKernelType {

 fn some_kernel_thing(self: KernelArc<T>) {

 }

}

Arbitrary self types
impl Foo {

 fn by_value(self /* self: Self */);

 fn by_ref(&self /* self: &Self */);

 fn by_ref_mut(&mut self /* self: &mut Self */);

 fn by_box(self: Box<Self>);

 fn by_rc(self: Rc<Self>);

 fn by_custom_ptr(self: CustomPtr<Self>);

}

struct CustomPtr<T>(*const T);

impl<T> Receiver for CustomPtr<T> {

 type Target = T;

}

trait Receiver {

 type Target: ?Sized;

}

NEW

RFC

https://github.com/rust-lang/rfcs/blob/master/text/3519-arbitrary-self-types-v2.md

RfL takeaways
● Please continue to help and support Arbitrary Self Types stabilization (and

thanks for your help so far!)

● Decide whether kernel C programmers will get cross if their mistakes cause
weird Rust UB crashes
○ If so, and if your Rust/C interface is sufficiently complex, maybe you want

to ban Rust references to C types too
○ Or maybe it’s good enough to keep using opaque types (UnsafeCell,

MaybeUninit) and forbid &mut

● Maybe lessons can be learned more generally from our experiences (technical &
social) in deploying Rust in Chromium - feel free to chat later!

Q&A/discussion

